Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + m - 3 = 0\) (\(m\) là tham số). Tìm \(m\) để phương tình có hai nghiệm phân biệt cùng dương.
Trả lời bởi giáo viên
Phương trình có hai nghiệm phân biệt cùng dương \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}b{'^2} - ac > 0\\\dfrac{{ - b}}{a} > 0\\\dfrac{c}{a} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - 1} \right)^2} - \left( {m - 3} \right) > 0\\2\left( {m - 1} \right) > 0\\m - 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 1 - m + 3 > 0\\m - 1 > 0\\m > 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 3m + 4 > 0\\m > 1\\m > 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m - \frac{3}{2}} \right)^2} + \frac{7}{4} > 0\,\,\forall m\\m > 3\end{array} \right. \Leftrightarrow m > 3\end{array}\)
Vậy \(m > 3\) thì phương trình đã cho có hai nghiệm phân biệt cùng dương.
Hướng dẫn giải:
Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt cùng dương \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right..\)