Cho một chất điểm dao động điều hòa với tần số $1Hz$, thời điểm đầu vật qua vị trí $x = 5cm$ theo chiều dương với tốc độ \(v = 10\pi cm/s\). Viết phương trình dao động.
Trả lời bởi giáo viên
Ta có:
Tốc độ góc: $\omega = 2\pi f = 2\pi .1 = 2\pi (ra{\rm{d}}/s)$
Biên độ dao động:
\({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {5^2} + {\left( {\frac{{10\pi }}{{2\pi }}} \right)^2} \to A = 5\sqrt 2 cm\)
Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi = 5\\{\rm{v = - A}}\omega {\rm{sin}}\varphi > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{5}{{5\sqrt 2 }}\\\sin \varphi < 0\end{array} \right. \to \varphi = - \frac{\pi }{4}\)
=> \(x = 5\sqrt 2 {\rm{cos}}\left( {2\pi t - \frac{\pi }{4}} \right)cm = 5\sqrt 2 \sin \left( {2\pi t - \frac{\pi }{4} + \frac{\pi }{2}} \right) = 5\sqrt 2 \sin \left( {2\pi t + \frac{\pi }{4}} \right)cm\)
Hướng dẫn giải:
- Xác định \(\omega = 2\pi f\)
- Sử dụng hệ thức độc lập xác định biên độ \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\)
- Xác định pha ban đầu: Tại t=0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\{\rm{v = - A}}\omega {\rm{sin}}\varphi \end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{{{x_0}}}{A}\\\sin \varphi = - \frac{v}{{A\omega }}\end{array} \right. \to \varphi = ?\)
- Sử dụng công thức lượng giác: \({\rm{cos}}\alpha {\rm{ = sin}}\left( {\alpha + \frac{\pi }{2}} \right)\)