Câu hỏi:
2 năm trước

Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(P = \overrightarrow {AC} .\left( {\overrightarrow {CD}  + \overrightarrow {CA} } \right).\)

Trả lời bởi giáo viên

Đáp án đúng: c

Từ giả thiết suy ra \(AC = a\sqrt 2 .\)

Ta có \(P = \overrightarrow {AC} .\left( {\overrightarrow {CD}  + \overrightarrow {CA} } \right) = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {AC} .\overrightarrow {CA}  =  - \overrightarrow {CA} .\overrightarrow {CD}  - {\overrightarrow {AC} ^2}\)

\( =  - CA.CD\cos \left( {\overrightarrow {CA} ,\overrightarrow {CD} } \right) - A{C^2} =  - a\sqrt 2 .a.\cos {45^0} - {\left( {a\sqrt 2 } \right)^2} =  - 3{a^2}.\)

Hướng dẫn giải:

Sử dụng tính chất \(\overrightarrow a \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow a .\overrightarrow b  + \overrightarrow a .\overrightarrow c \).

Câu hỏi khác