Cho hình chóp tứ giác \(S.ABCD\). Gọi \(V\) là thể tích khối chóp \(S.ABCD\). Lấy điểm \(A'\) trên cạnh \(SA\)sao cho \(SA = 4SA'\). Mặt phẳng qua \(A'\) và song song với đáy của hình chóp cắt các cạnh \(SB\), \(SC\), \(SD\) lần lượt tại các điểm \(B'\), \(C'\), \(D'\). Thể tích khối chóp \(S.A'B'C'D'\)bằng:
Trả lời bởi giáo viên
\(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}} = \dfrac{1}{{64}}\).
\(\dfrac{{{V_{S.A'D'C'}}}}{{{V_{S.ADC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SD'}}{{SD}}.\dfrac{{SC'}}{{SC}} = \dfrac{1}{{64}}\).
Suy ra \({V_{S.A'B'C'}} + {V_{S.A'D'C'}} = \dfrac{1}{{64}}\left( {{V_{S.ABC}} + {V_{S.ADC}}} \right)\).
hay \({V_{S.A'B'C'D'}} = \dfrac{1}{{64}}{V_{S.ABCD}} = \dfrac{V}{{64}}\).
Hướng dẫn giải:
Sử dụng công thức tỉ số thể tích cho khối chóp tam giác \(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}}\)