Câu hỏi:
2 năm trước

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và góc \(\widehat {BAD} = 60^\circ .\) Hình chiếu vuông góc của S lên mặt phẳng đáy là trọng tâm G của tam giác BCD, góc giữa SA và đáy bằng \(60^\circ \)

Tính khoảng cách giữa hai đường thẳng AC và SB.

Trả lời bởi giáo viên

Đáp án đúng: b

Kẻ Bx song song với AC.

Kẻ GH vuông góc với Bx, GK vuông góc với SH

Bước 1: Chứng minh \(GK \bot \left( {SBH} \right)\)

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}GH \bot BH\\BH \bot SG\end{array} \right\} \Rightarrow BH \bot \left( {SGH} \right)\\\left. \begin{array}{l} \Rightarrow BH \bot GK\\GK \bot SH\end{array} \right\} \Rightarrow GK \bot \left( {SHB} \right)\end{array}\)

Bước 2: Chứng minh \(d\left( {AC,SB} \right) = GK\)

Ta có BH//AC  \( \Rightarrow AC//\left( {SHB} \right)\)

Mà \(SB \subset \left( {SHB} \right)\)

\( =  > d\left( {SB,AC} \right)\)\( = d\left( {AC,\left( {SHB} \right)} \right)\)\( = d\left( {G,\left( {SHB} \right)} \right) = GK\)

Bước 3: Tính GK

Dễ thấy tứ giác OBHG là hình chữ nhật

=> \(HG = OB = \dfrac{a}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SGH ta có:

\(\dfrac{1}{{G{K^2}}} = \dfrac{1}{{S{G^2}}} + \dfrac{1}{{G{H^2}}}\)\( = \dfrac{1}{{4{a^2}}} + \dfrac{4}{{{a^2}}} = \dfrac{{17}}{{4{a^2}}}\)

\( \Rightarrow GK = \dfrac{{2\sqrt {17} a}}{{17}}\)

Vậy \(d\left( {SB,AC} \right) = \dfrac{{2a\sqrt {17} }}{{17}}\)

Hướng dẫn giải:

Kẻ Bx song song với AC. Kẻ GH vuông góc với Bx, GK vuông góc với SH

Bước 1: Chứng minh \(GK \bot \left( {SBH} \right)\)

Bước 2: Chứng minh \(d\left( {AC,SB} \right) = GK\)

Bước 3: Tính GK

Câu hỏi khác