Cho hệ phương trình\(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm giá trị của m để : \(6x - 2y = 13.\)
Trả lời bởi giáo viên
Ta có \(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\)$ \Leftrightarrow \left\{ \begin{array}{l}y = mx - 2m\\4x - m\left( {mx - 2m} \right) = m + 6\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}y = mx - 2m\\x\left( {{m^2} - 4} \right) = 2{m^2} - m - 6\end{array} \right.$
Hệ phương trình có nghiệm duy nhất khi ${m^2} - 4 \ne 0 \Leftrightarrow m \ne \left\{ { -2;2} \right\}$
Khi đó $x = \dfrac{{2{m^2} - m - 6}}{{{m^2} - 4}} = \dfrac{{\left( {2m + 3} \right)\left( {m - 2} \right)}}{{\left( {m - 2} \right)\left( {m + 2} \right)}} = \dfrac{{2m + 3}}{{m + 2}}$$ \Rightarrow y = m.\dfrac{{2m + 3}}{{m + 2}} - 2m$.
Thay $\left\{ \begin{array}{l}x = \dfrac{{2m + 3}}{{m + 2}}\\y = \dfrac{{ - m}}{{m + 2}}\end{array} \right.$ vào phương trình \(6x - 2y = 13\) ta được
$6.\dfrac{{2m + 3}}{{m + 2}} - 2.\dfrac{{ - m}}{{m + 2}} = 13$
$\Leftrightarrow \dfrac{{14m + 18}}{{m + 2}} = 13$
$\Rightarrow 14m + 18 = 13m + 26 $
$\Leftrightarrow m = 8\left( {TM} \right)$
Vậy $m = 8$ là giá trị cần tìm.
Hướng dẫn giải:
Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$
Bước 2: Thay $x,y$ vừa tìm được vào phương trình yêu cầu để tìm $m$