Cho hệ phương trình: $\left\{ \begin{array}{l}\left( {a + 1} \right)x - y = a + 1\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\x + \left( {a - 1} \right)y = 2\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&{}&{\left( 2 \right)}\end{array}}&{}\end{array}\end{array} \right.$ ($a$ là tham số)
Với $a \ne 0$ hệ có nghiệm duy nhất $\left( {x;y} \right)$. Tính $x + y$ theo $a$
Trả lời bởi giáo viên
Từ PT $\left( 1 \right)$ ta có: $y = \left( {a + 1} \right)x - \left( {a + 1} \right)\,\,\,\,\left( * \right)$ thế vào PT $\left( 2 \right)$ ta được: $x + \left( {a - 1} \right)\left[ {\left( {a + 1} \right)x - \left( {a + 1} \right)} \right] = 2 \Leftrightarrow x + \left( {{a^2} - 1} \right)x - \left( {{a^2} - 1} \right) = 2 \Leftrightarrow {a^2}x = {a^2} + 1\,\,\,\,\left( 3 \right)$
Với $a \ne 0$, phương trình $\left( 3 \right)$ có nghiệm duy nhất $x = \dfrac{{{a^2} + 1}}{{{a^2}}}$. Thay vào $\left( * \right)$ ta có:
$y = \left( {a + 1} \right)\dfrac{{{a^2} + 1}}{{{a^2}}} - \left( {a + 1} \right) = \dfrac{{\left( {a + 1} \right)\left( {{a^2} + 1} \right) - {a^2}\left( {a + 1} \right)}}{{{a^2}}} = \dfrac{{{a^3} + a + {a^2} + 1 - {a^3} - {a^2}}}{{{a^2}}} = \dfrac{{a + 1}}{{{a^2}}}$
Suy ra hệ phương trình đã cho có nghiệm duy nhất$\left( {x;y} \right) = \left( {\dfrac{{{a^2} + 1}}{{{a^2}}};\dfrac{{a + 1}}{{{a^2}}}} \right)$
$ \Rightarrow x + y = \dfrac{{{a^2} + 1}}{{{a^2}}} + \dfrac{{a + 1}}{{{a^2}}} = \dfrac{{{a^2} + a + 2}}{{{a^2}}}$
Hướng dẫn giải:
Bước 1: Rút $x$ từ phương trình dưới thay vào phương trình trên
Bước 2: Tìm $y$ theo phương trình mới, từ đó suy ra $x$