Câu hỏi:
2 năm trước
Cho hệ phương trình $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $\dfrac{x}{y}$
Trả lời bởi giáo viên
Đáp án đúng: c
ĐK: $x \ne 0$
Ta có $\left\{ \begin{array}{l}\dfrac{2}{x} + y = 3\\\dfrac{1}{x} - 2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{4}{x} + 2y = 6\\\dfrac{1}{x} - 2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\\dfrac{2}{x} + y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{1}{2}\\y = - 1\end{array} \right.(TM)$
Vậy hệ phương trình có 1 nghiệm duy nhất $\left( {x;y} \right) = \left( {\dfrac{1}{2}; - 1} \right)$ $ \Rightarrow \dfrac{x}{y} = - \dfrac{1}{2}$