Cho hai đường thẳng \({d_1}:y = \left( {m - 2} \right)x + m + 4\) và \({d_2}:y = \left( {n + 1} \right)x - 3\)
Tìm các giá trị của \(m\) và của \(n\) để hai đường thẳng \({d_1}\)và \({d_2}\) cùng đi qua điểm \(A\left( {1;0} \right).\)
Trả lời bởi giáo viên
Hai đường thẳng \({d_1}\) và \({d_2}\) cùng đi qua điểm \(A\left( {1;0} \right)\) nên ta thay tọa độ điểm A vào hai phương trình ta được:
\(\left\{ \begin{array}{l}0 = \left( {m - 2} \right).1 + m + 4\\0 = \left( {n + 1} \right).1 - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 2 + m + 4 = 0\\n + 1 - 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m = - 2\\n = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - 1\\n = 2\end{array} \right.\)
Vậy \(m = - 1;n = 2\).
Hướng dẫn giải:
Hai đường thẳng cùng đi qua 1 điểm thì tọa độ của điểm đó đều thỏa mãn hai phương trình đường thẳng.