Trả lời bởi giáo viên
Đáp án đúng: b
Ta có:
\(\begin{array}{l}y = \left( {m - 2} \right)x + m\\ \Leftrightarrow y = mx - 2x + m\\ \Leftrightarrow \left( {x + 1} \right)m - 2x - y = 0\,\,\,\left( * \right)\end{array}\)
Để phương trình (*) nghiệm đúng với mọi \(m\) thì \(\left\{ \begin{array}{l}x + 1 = 0\\ - 2x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 2\end{array} \right.\).
Vậy đường thẳng \(\left( d \right)\) luôn đi qua \(A\left( { - 1;2} \right)\) với mọi \(m\).
Hướng dẫn giải:
Đưa phương trình về dạng phương trình bậc nhất ẩn \(m\), tìm điều kiện để phương trình có vô số nghiệm, từ đó suy ra tọa độ điểm cố định mà đường thẳng đi qua.