Câu hỏi:
2 năm trước

Cho \(\Delta ABC\)  vuông tại $A,{\rm{ }}AB = {\rm{1}}2cm,{\rm{ }}AC = 16cm,$ tia phân giác $AD,$ đường cao $AH.$

Tính $HD.$

Trả lời bởi giáo viên

Đáp án đúng: a

Xét tam giác vuông \(ABC\)  ta có \(B{C^2} = A{B^2} + A{C^2}\)  (định lý Pytago)

Hay \(B{C^2} = {12^2} + {16^2} \Rightarrow B{C^2} = 400 \Rightarrow BC = 20\,cm\)

Vì \(AD\) là phân giác góc \(A\)  nên theo tính chất đường phân giác trong tam giác ta có

\(\dfrac{{BD}}{{AB}} = \dfrac{{DC}}{{AC}} \Leftrightarrow \dfrac{{BD}}{{12}} = \dfrac{{DC}}{{16}} = \dfrac{{BD + DC}}{{12 + 16}} = \dfrac{{BC}}{{28}} = \dfrac{{20}}{{28}} = \dfrac{5}{7}\)

Suy ra \(BD = 12.\dfrac{5}{7} = \dfrac{{60}}{7}\,cm\)

Theo hệ thức lượng trong tam giác vuông \(ABC\) ta có \(A{B^2} = BH.BC \Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{{12}^2}}}{{20}} = 7,2\,cm\)

Lại có \(HD = BD - BH = \dfrac{{60}}{7} - 7,2 = \dfrac{{48}}{{35}}\,\,cm\)

Hướng dẫn giải:

Áp dụng tính chất đường phân giác của tam giác để tính \(BD.\)

Áp dụng hệ thức lượng trong tam giác vuông để tính \(BH\)

Từ đó tính \(HD.\)

Câu hỏi khác