Cho \(A=\dfrac{{{4^6}{{.9}^5} + {6^9}.120}}{{{8^4}{{.3}^{12}} - {6^{11}}}}\), chọn câu đúng:
Trả lời bởi giáo viên
Ta có \(A=\dfrac{{{4^6}{{.9}^5} + {6^9}.120}}{{{8^4}{{.3}^{12}} - {6^{11}}}} = \dfrac{{{{\left( {{2^2}} \right)}^6}.{{\left( {{3^2}} \right)}^5} + {6^9}.120}}{{{{\left( {{2^3}} \right)}^4}{{.3}^{12}} - {6^{11}}}}\)\( = \dfrac{{{2^{12}}{{.3}^{10}} + {6^9}.6.20}}{{{2^{12}}{{.3}^{12}} - {6^{11}}}} = \dfrac{{{2^2}{{.2}^{10}}{{.3}^{10}} + {6^{10}}.20}}{{{{\left( {2.3} \right)}^{12}} - {6^{11}}}}\)\( = \dfrac{{{2^2}{{.6}^{10}} + {6^{10}}.20}}{{{6^{12}} - {6^{11}}}}\)\( = \dfrac{{{6^{10}}\left( {{2^2} + 20} \right)}}{{{6^{10}}\left( {{6^2} - 6} \right)}} = \dfrac{{24}}{{30}} = \dfrac{4}{5}\)
Ta thấy \(A = \dfrac{4}{5} < \dfrac{5}{5} = 1\)
Vậy \(A < 1\).
Hướng dẫn giải:
Sử dụng công thức \({x^{m.n}} = {\left( {{x^m}} \right)^n}\) và \({\left( {x.y} \right)^m} = {x^m}.{y^m}\) để biển đổi và tính toán.