Câu hỏi:
2 năm trước

Cho \(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\). Tính giá trị biểu thức \(\dfrac{7}{4}.A\)?

 

Trả lời bởi giáo viên

Đáp án đúng: b

\(A = 1 - \dfrac{3}{4} + {\left( {\dfrac{3}{4}} \right)^2} - {\left( {\dfrac{3}{4}} \right)^3} + {\left( {\dfrac{3}{4}} \right)^4} - ... - {\left( {\dfrac{3}{4}} \right)^{2017}} + {\left( {\dfrac{3}{4}} \right)^{2018}}\)

\( \Rightarrow \dfrac{3}{4}A = \dfrac{3}{4} - {\left( {\dfrac{3}{4}} \right)^2} + {\left( {\dfrac{3}{4}} \right)^3} - {\left( {\dfrac{3}{4}} \right)^4} + ...\) \( + {\left( {\dfrac{3}{4}} \right)^{2017}} - {\left( {\dfrac{3}{4}} \right)^{2018}} + {\left( {\dfrac{3}{4}} \right)^{2019}}\)  

\( \Rightarrow A + \dfrac{3}{4}A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \left( {1 + \dfrac{3}{4}} \right)A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

\( \Rightarrow \dfrac{7}{4}.A = 1 + {\left( {\dfrac{3}{4}} \right)^{2019}}\)

Hướng dẫn giải:

+ Nhân \(A\) với \(\dfrac{3}{4}\) rồi thực hiện cộng \(A\) với \(\dfrac{3}{4}A\)

+ Sau đó thu gọn kết quả và suy ra \(\dfrac{7}{4}.A\).

 

Câu hỏi khác