Bất phương trình $\dfrac{1}{x} + \dfrac{2}{{x + 4}} < \dfrac{3}{{x + 3}}$ có tập nghiệm là
Trả lời bởi giáo viên
Bất phương trình $\dfrac{1}{x} + \dfrac{2}{{x + 4}} < \dfrac{3}{{x + 3}} \Leftrightarrow \dfrac{{x + 12}}{{x\left( {x + 3} \right)\left( {x + 4} \right)}} < 0.$
Đặt $f\left( x \right) = \dfrac{{x + 12}}{{x\left( {x + 3} \right)\left( {x + 4} \right)}}.$
Ta có $x + 12 = 0 \Leftrightarrow x = - 12;$$x + 3 = 0 \Leftrightarrow x = - 3;$ $x + 4 = 0 \Leftrightarrow x = - 4$.
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow \left[ \begin{array}{l} - \,12 < x < - \,4\\ - \,3 < x < 0\end{array} \right..$
Vậy tập nghiệm của bất phương trình là $S = \left( { - \,12; - \,4} \right) \cup \left( { - \,3;0} \right).$
Hướng dẫn giải:
- Quy đồng mẫu thức và rút dọn vế trái đưa về dạng tích, thương cửa các nhị thức bậc nhất.
- Xét dấu vế trái vè kết luận nghiệm.
Câu hỏi khác
Cho biểu thức \(f\left( x \right) = 9{x^2} - 1.\) Tập hợp tất cả các giá trị của \(x\) để \(f\left( x \right) < 0\) là
\(x \in \left( { - \infty ; - \dfrac{1}{3}} \right) \cup \left( {\dfrac{1}{3}; + \infty } \right).\)