Trả lời bởi giáo viên
Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với đỉnh của parabol, tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của (P) là \({y^2} = 2px\left( {p > 0} \right).\)
Gọi F là tiêu điểm của (P), (x; y) là toạ độ của sao chổi A.
Khi đó khoảng cách giữa sao chổi A và tâm Mặt Trời là:
\(\;AF = \;x + \dfrac{p}{2} \ge \;\dfrac{p}{2}\;\)(vì \(x{\rm{ }} \ge {\rm{ }}0\))\(\)
⇒ khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là \(\dfrac{p}{2}\) (km)\(\)
\( \Rightarrow \dfrac{p}{2} = 112 \Rightarrow p = 224.\)
Vậy phương trình chính tắc của (P) là \({y^2}\; = 448x.\)
Hướng dẫn giải:
Chọn hệ trục toạ độ sao cho gốc toạ độ O trùng với đỉnh của parabol, tâm Mặt Trời trùng với tiêu điểm của parabol, đơn vị trên các trục là kilômét.
Gọi phương trình chính tắc của (P) là \({y^2} = 2px\left( {p > 0} \right).\)
Gọi F là tiêu điểm của (P), (x; y) là toạ độ của sao chổi A.
Khi đó khoảng cách giữa sao chổi A và tâm Mặt Trời là:
\(\;AF = \;x + \dfrac{p}{2} \ge \;\dfrac{p}{2}\;\)(vì \(x{\rm{ }} \ge {\rm{ }}0\))\(\)