Câu hỏi:
1 năm trước

Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).

Trả lời bởi giáo viên

Đáp án đúng: b

Khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P) thì sao chổi có hoành độ là \(x = \dfrac{p}{2}\)

Khoảng cách giữa sao chổi A và tâm Mặt Trời khi đó là:

\(AF = \;x + \dfrac{p}{2} = \dfrac{p}{2} + \dfrac{p}{2} = p = 224\left( {km} \right).\)

Hướng dẫn giải:

Khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P) thì sao chổi có hoành độ là \(x = \dfrac{p}{2}\)

Khoảng cách giữa sao chổi A và tâm Mặt Trời khi đó là: \(MF = \;x + \dfrac{p}{2}\)

Câu hỏi khác