Trả lời bởi giáo viên
Ta có: \(\Delta ABC\) vuông cân tại $A$ nên \(\widehat B = \widehat C = \dfrac{{180^\circ - \widehat A}}{2} = \dfrac{{180^\circ - 90^\circ }}{2} = 45^\circ \)
Xét tam giác vuông $FGC$ có
\(\widehat {GFC} = 180^\circ - \widehat {FGC} - \widehat C = 180^\circ - 90^\circ - 45^\circ = 45^\circ \) \( \Rightarrow \widehat {GFC} = \widehat C\)
Suy ra \(\Delta FGC\) là tam giác vuông cân tại $G$ \( \Rightarrow FG = GC\)
Chứng minh tương tự:
Xét tam giác vuông $EHB$ có
\(\widehat {BEH} = 180^\circ - \widehat {EHB} - \widehat B = 180^\circ - 90^\circ - 45^\circ = 45^\circ \)\( \Rightarrow \widehat {BEH} = \widehat B\)
Suy ra tam giác $EBH$ vuông cân tại $H$ \( \Rightarrow EH = HB\)
Mà \(BH = HG = GC(gt)\) nên \(FG = EH = HG\)
Lại có: $\left. \begin{array}{l}EH \bot BC(gt)\\FG \bot BC(gt)\end{array} \right\} \Rightarrow EH{\rm{//}}FG$ ( định lí từ vuông góc đến song song)
Xét tứ giác $EFGH$ có:
\(\left\{ \begin{array}{l}EH = FG(cmt)\\EH{\rm{//}}FG(cmt)\end{array} \right.\) \( \Rightarrow \) Tứ giác $EFGH$ là hình bình hành (dhnb)
Mà \(\widehat H = 90^\circ \) ( do \(EH \bot BC\) ) nên hình bình hành $EFGH$ là hình chữ nhật.
Mặt khác \(EH = HG(cmt)\) nên hình chữ nhật $EFGH$ là hình vuông.
Hướng dẫn giải:
Bước 1: Chứng minh tứ giác $EFGH$ là hình bình hành thông qua dấu hiệu nhận biết: Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
Bước 2: Chứng minh tứ giác $EFGH$ là hình chữ nhật thông qua dấu hiệu nhận biết: Hình bình hành có một góc vuông là hình chữ nhật.
Bước 3: Chứng minh tứ giác $EFGH$ là hình vuông thông qua dấu hiệu nhận biết: Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.