Trong mặt phẳng tọa độ $Oxy$ cho hai đường thẳng song song $a$ và $a'$ lần lượt có phương trình \(2x - 3y - 1 = 0\) và \(2x - 3y + 5 = 0\). Phép tịnh tiến theo vectơ nào sau đây không biến đường thẳng $a$ thành đường thẳng $a'$ ?
Trả lời bởi giáo viên
Ta có: \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x' - a\\y = y' - b\end{array} \right. \Rightarrow 2\left( {x' - a} \right) - 3\left( {y' - b} \right) - 1 = 0\) hay $2x' - 3y' - 2a + 3b - 1 = 0$.
Muốn đường thẳng này trùng với đường thẳng $a':2x - 3y + 5 = 0$ ta phải có $ - 2a + 3b - 1 = 5$ hay $ - 2a + 3b = 6$. Vectơ $\overrightarrow u $ ở phương án D không thỏa mãn điều kiện đó.
Hướng dẫn giải:
- Sử dụng biểu thức tọa độ của phép tịnh tiến \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\) rút ra \(\left\{ \begin{array}{l}x = x' - a\\y = y' - b\end{array} \right.\)
- Thay \(\left\{ \begin{array}{l}x = x' - a\\y = y' - b\end{array} \right.\) vào phương trình đường thẳng \(a\) và suy ra phương trình đường thẳng \(a'\) theo \(a\) và \(b\).
- Đồng nhất hệ số suy ra công thức biểu thị mối quan hệ giữa \(a\) và \(b\).
- Thử từng đáp án vào công thức trên và suy ra đáp án đúng.
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án B vì tính nhầm \(\left( { - 2} \right).\left( { - 3} \right) + 3.0 = 5\) là sai.