Trong không gian với hệ tọa độ Oxyz, cho điểm $M(1;2;3)$. Gọi $(P)$ là mặt phẳng đi qua điểm $M$ và cách gốc tọa độ O một khoảng lớn nhất, mặt phẳng $(P)$ cắt các trục tọa độ tại các điểm A,B,C . Tính thể tích khối chóp O.ABC.
Trả lời bởi giáo viên
Ta có: .$d\left( {O;\left( P \right)} \right) \le OM$
Dấu bằng xảy ra $ \Leftrightarrow OM \bot \left( P \right) \Rightarrow \left( P \right)$ nhận $\overrightarrow {OM} = \left( {1;2;3} \right)$ là 1 VTPT. Do đó phương trình mặt phẳng (P) là: $1\left( {x - 1} \right) + 2\left( {y - 2} \right) + 3\left( {z - 3} \right) = 0\left( P \right):x + 2y + 3z - 14 = 0$
$ \Rightarrow A\left( {14;0;0} \right);B\left( {0;7;0} \right);C\left( {0;0;\dfrac{{14}}{3}} \right) \Rightarrow {V_{O.ABC}} = \dfrac{1}{6}OA.OB.OC = \dfrac{{686}}{9}.$
Hướng dẫn giải:
$d\left( {O;\left( P \right)} \right) \le OM$, để mặt phẳng (P) đi qua điểm M và cách O một khoảng lớn nhất thì (P) đi qua M và $\left( P \right) \bot OM$
Viết phương trình mặt phẳng (P), tìm tọa độ các điểm A, B, C và sử dụng công thức ${V_{OABC}} = \dfrac{1}{6}OA.OB.OC$