Cho \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\) là cặp VTCP của mặt phẳng \(\left( P \right)\). Véc tơ nào sau đây là một véc tơ pháp tuyến của \(\left( P \right)\)?
Trả lời bởi giáo viên
Ta có: \(\overrightarrow a = \left( {5;1;3} \right),\overrightarrow b = \left( { - 1; - 3; - 5} \right)\)
\(\left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}\begin{array}{l}1\\ - 3\end{array}&\begin{array}{l}3\\ - 5\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}3\\ - 5\end{array}&\begin{array}{l}5\\ - 1\end{array}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}\begin{array}{l}5\\ - 1\end{array}&\begin{array}{l}1\\ - 3\end{array}\end{array}} \right|} \right) = \left( {4;22; - 14} \right)\)
Do đó \(\overrightarrow n = \left( {4;22; - 14} \right)\) là một VTPT của \(\left( P \right)\) nên \(\dfrac{1}{2}\overrightarrow n = \left( {2;11; - 7} \right)\) cũng là một VTPT của \(\left( P \right)\).
Hướng dẫn giải:
Nếu \(\overrightarrow a ,\overrightarrow b \) là cặp VTCP của \(\left( P \right)\) thì \(\left[ {\overrightarrow a ,\overrightarrow b } \right]\) là một VTPT của \(\left( P \right)\).
Giải thích thêm:
- Một số em có thể sẽ chọn nhầm đáp án C vì tính sai tích có hướng của hai véc tơ.
- Có thể làm bài toán bằng cách thử đáp án với chú ý: VTPT vuông góc với cả hai VTCP.
Cụ thể: \(\left( {1;2;0} \right).\left( {5;1;3} \right) \ne 0\) nên loại.
\(\left( {2;11; - 7} \right).\left( {5;1;3} \right) = 0;\left( {2;11; - 7} \right).\left( { - 1; - 3; - 5} \right) = 0\) nên B đúng.