Câu hỏi:
2 năm trước
Trên mặt đất nơi có gia tốc trọng trường g. Một con lắc đơn dao động với chu kỳ $T = 0,5s$. Nếu đem con lắc này lên độ cao $5 km$ thì nó dao động với chu kỳ bằng bao nhiêu (lấy đến 5 chử số thập phân). Cho bán kính Trái Đất là $R = 6400 km$.
Trả lời bởi giáo viên
Đáp án đúng: b
Ta có:
\(\begin{array}{l}\dfrac{{{T_2}}}{{{T_1}}} = 1 + \dfrac{h}{R} = 1 + \dfrac{5}{{6400}} = 1,00078\\ \to {T_2} = 1,00078{T_1} = 0,50039s\end{array}\)
Hướng dẫn giải:
Áp dụng công thức thời gian đồng hồ chạy sai trong 1s khi thay đổi độ cao: \(\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{h}{R}\) hay \(\dfrac{{{T_2}}}{{{T_1}}} = 1 + \dfrac{h}{R}\)