Tìm tất cả các giá trị thực của tham số m để phương trình sau có hai nghiệm thực phân biệt: \({\log _3}(1 - {x^2}) + {\log _{\frac{1}{3}}}(x + m - 4) = 0\).
Trả lời bởi giáo viên
\({\log _3}(1 - {x^2}) + {\log _{\frac{1}{3}}}(x + m - 4) = 0 \Leftrightarrow \left\{ \begin{array}{l}1 - {x^2} > 0\\{\log _3}(1 - {x^2}) = {\log _3}(x + m - 4)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \left( { - 1;1} \right)\\1 - {x^2} = x + m - 4\end{array} \right.\)
Yêu cầu bài toán\( \Leftrightarrow f\left( x \right) = {x^2} + x + m - 5 = 0\) có 2 nghiệm phân biệt \( \in \left( { - 1;1} \right)\)
Cách 1: Dùng định lí về dấu tam thức bậc hai.
Để thỏa yêu cầu bài toán ta phải có phương trình \(f\left( x \right) = 0\) có hai nghiệm thỏa: \( - 1 < {x_1} < {x_2} < 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}a.f\left( { - 1} \right) > 0\\a.f\left( 1 \right) > 0\\\Delta > 0\\ - 1 < \dfrac{S}{2} < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m - 5 > 0\\m - 3 > 0\\21 - 4m > 0\end{array} \right. \) \(\Leftrightarrow 5 < m < \dfrac{{21}}{4}\)
Hướng dẫn giải:
- Tìm ĐKXĐ.
- Biến đổi phương trình về cùng cơ số rồi suy ra phương trình bậc hai ẩn $x$.
- Tìm điều kiện để phương trình trên có $2$ nghiệm thỏa mãn ĐKXĐ.