Câu hỏi:
2 năm trước

Tìm \(m\) để hàm số \(y = \dfrac{{\sqrt {{x^2} + mx - m} }}{{{x^2} - 2mx + m + 2}}\) có tập xác định là \(\mathbb{R}.\)

Trả lời bởi giáo viên

Đáp án đúng: c

Hàm số \(y = \dfrac{{\sqrt {{x^2} + mx - m} }}{{{x^2} - 2mx + m + 2}}\) có tập xác định là \(\mathbb{R}\) khi và chỉ khi:

\(\left\{ \begin{array}{l}{x^2} + mx - m \ge 0,\forall x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\{x^2} - 2mx + m + 2 \ne 0,\forall x\,\,\,\,\,(2)\end{array} \right.\)

\(\left( 1 \right) \Leftrightarrow {\Delta _1} = {m^2} + 4m \le 0 \Leftrightarrow m\left( {m + 4} \right) \le 0 \Leftrightarrow  - 4 \le m \le 0.\)

\(\left( 2 \right) \Leftrightarrow {\Delta _2}' = {m^2} - m - 2 < 0\) \( \Leftrightarrow \left( {m + 1} \right)\left( {m - 2} \right) < 0 \Leftrightarrow  - 1 < m < 2.\)

Vậy \( - 1 < m \le 0.\)

Hướng dẫn giải:

Hàm số \(f\left( x \right) = \dfrac{{\sqrt A }}{B}\)có tập xác định là \(\mathbb{R}\) khi và chỉ khi: \(\left\{ \begin{array}{l}A > 0\\B \ne 0\end{array} \right.\) với\(\forall x.\)

Sử dụng quy tắc xét dấu của tam thức bậc hai: “Trong trái ngoài cùng” để làm bài toán.

Câu hỏi khác