Câu hỏi:
2 năm trước

Tìm m để hàm số \(y = \sqrt {5\sin 4x - 6\cos 4x + 2m - 1} \) xác định với mọi $x$.

Trả lời bởi giáo viên

Đáp án đúng: d

ĐKXĐ: \(5\sin 4x - 6\cos 4x + 2m - 1 \ge 0,\forall x \)\(\Leftrightarrow 2m \ge  - 5\sin 4x + 6\cos 4x + 1,\forall x\)

\( \Rightarrow 2m \ge \max f\left( x \right)\) với \(f\left( x \right) = 6\cos 4x - 5\sin 4x + 1\)

\(f\left( x \right) = \sqrt {{6^2} + {5^2}} .\left( {\dfrac{6}{{\sqrt {{6^2} + {5^2}} }}.\cos 4x - \dfrac{5}{{\sqrt {{6^2} + {5^2}} }}.\sin 4x} \right)\)

\(f(x) = \sqrt {61} \left( {\dfrac{6}{{\sqrt {61} }}\cos 4x - \dfrac{5}{{\sqrt {61} }}\sin 4x} \right) + 1 = \sqrt {61} \sin \left( {\alpha  - 4x} \right) + 1\) với $\sin \alpha  = \dfrac{6}{{\sqrt {61} }},\cos \alpha  = \dfrac{5}{{\sqrt {61} }}$.

\( \Rightarrow f(x) \le \sqrt {61}  + 1 \Rightarrow \max f(x) = \sqrt {61}  + 1 \Rightarrow m \ge \dfrac{{\sqrt {61}  + 1}}{2}\)

Hướng dẫn giải:

- Tìm điều kiện để hàm số xác định.

- Biến đổi bất đẳng thức trở thành \(g\left( m \right) \ge f\left( x \right),\forall x \Leftrightarrow g\left( m \right) \ge \max f\left( x \right)\).

Giải thích thêm:

Một số em có thể sẽ nhầm điều kiện thành \(2m \ge \min f\left( x \right)\) dẫn đến chọn nhầm đáp án B là sai.

Hoặc một số em khác sẽ chọn nhầm đáp án A vì quên không chia cho \(2\) khi tìm điều kiện của \(m\).

Câu hỏi khác