Câu hỏi:
2 năm trước
Tìm \(m\) để bất phương trình \({m^2}x + 1 > \left( {x + 1} \right)m\) vô nghiệm.
Trả lời bởi giáo viên
Đáp án đúng: a
\(\begin{array}{l}{m^2}x + 1 > \left( {x + 1} \right)m \Leftrightarrow {m^2}x - mx - m + 1 > 0\\ \Leftrightarrow m\left( {m - 1} \right)x - m + 1 > 0\,\,\,\left( * \right)\,\end{array}\)
Bất phương trình vô nghiệm \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}m\left( {m - 1} \right) = 0\\ - m + 1 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 0\\m = 1\end{array} \right.\\m \ge 1\end{array} \right. \Leftrightarrow m = 1.\)
Hướng dẫn giải:
Bất phương trình \(ax + b > 0\) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b \le 0\end{array} \right..\)