Tìm giá trị của \(m\) để phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có hai nghiệm \({x_1},{x_2}\) và biểu thức \(A = {\left( {{x_1} - {x_2}} \right)^2}\) đạt giá trị nhỏ nhất.
Trả lời bởi giáo viên
Phương trình \({x^2} + (4m + 1)x + 2(m - 4) = 0\) có $a = 1 \ne 0$ và $\Delta = {\left( {4m + 1} \right)^2} - 8\left( {m - 4} \right) = 16{m^2} + 33 > 0;\forall m$
Nên phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).
Theo hệ thức Vi-ét ta có $\left\{ \begin{array}{l}{x_1} + {x_2} = - 4m - 1\\{x_1}.{x_2} = 2m - 8\end{array} \right.$
Xét \(A = {\left( {{x_1} - {x_2}} \right)^2} = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 16{m^2} + 33 \ge 33\)
Dấu “=” xảy ra khi $m = 0$
Vậy $m = 0$ là giá trị cần tìm.
Hướng dẫn giải:
Bước 1. Tìm điều kiện để phương trình có nghiệm \(\left\{ \begin{array}{l}a \ne 0\\\Delta \ge 0\end{array} \right.\).
Bước 2. Từ hệ thức đã cho và hệ thức Vi-ét, tìm được điều kiện của tham số.
Bước 3. Kiểm tra điều kiện của tham số xem có thỏa mãn điều kiện ở bước 1 hay không rồi kết luận.