Cho một hình cầu và hình trụ ngoại tiếp nó (đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu). Tính tỉ số giữa diện tích mặt cầu và diện tích xung quanh của hình trụ.
Trả lời bởi giáo viên
Vì đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính hình cầu nên \(h = 2R\) với \(R\) là bán kính hình cầu và cũng là bán kính đáy của hình trụ.
Diện tích mặt cầu \(S = 4\pi {R^2}\) , diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh = 2\pi R.2R = 4\pi {R^2}\)
Tỉ số giữa diện tích mặt cầu và diện tích xung quanh của hình trụ là \(\dfrac{S}{{{S_{xq}}}} = \dfrac{{4\pi {R^2}}}{{4\pi {R^2}}} = 1\) .
Hướng dẫn giải:
Sử dụng công thức diện tích mặt cầu $S = 4\pi {R^2}$ và diện tích xung quanh của hình trụ \({S_{xq}} = 2\pi Rh\)
Giải thích thêm:
Một số em có thể tính nhầm mối quan hệ giữa đường cao với bán kính đáy của hình trụ \(h = R\) dẫn đến ra kết quả sai là D.