Câu hỏi:
2 năm trước
Tìm điều kiện của \(m\) để hàm số có đồ thị \({d_1}\) luôn nghịch biến và điều kiện của \(n\) để hàm số có đồ thị \({d_2}\) luôn đồng biến.
Trả lời bởi giáo viên
Đáp án đúng: c
Hàm số có đồ thị \({d_1}:y = \left( {m - 2} \right)x + m + 4\) luôn nghịch biến \( \Leftrightarrow m - 2 < 0 \Leftrightarrow m < 2\)
Hàm số có đồ thị \({d_2}:y = \left( {n + 1} \right)x - 3\) luôn đồng biến \( \Leftrightarrow n + 1 > 0 \Rightarrow n > - 1\)
Vậy \(m < 2\) thì hàm số có đồ thị \({d_1}\) luôn nghịch biến.
\(n > - 1\) thì hàm số có đồ thị \({d_2}\) luôn đồng biến.
Hướng dẫn giải:
Hàm số có phương trình \(y = ax + b\left( {a \ne 0} \right)\): Luôn đồng biến khi \(a > 0\) và nghịch biến khi \(a < 0.\)