Trả lời bởi giáo viên
Điều kiện: \(a > 0,\,\,a \ne 4.\)
\(P = A.B = \dfrac{{a - 4}}{{a + 2\sqrt a }}.\dfrac{{a + 7\sqrt a }}{{a - 4}}\)\( = \dfrac{{\sqrt a \left( {\sqrt a + 7} \right)}}{{\sqrt a \left( {\sqrt a + 2} \right)}}\)
\( = \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = \dfrac{{\sqrt a + 2 + 5}}{{\sqrt a + 2}}\)\( = 1 + \dfrac{5}{{\sqrt a + 2}} > 1\)
Ta có: với \(a > 0 \Rightarrow \sqrt a > 0 \Rightarrow \sqrt a + 2 > 2\)
\(\begin{array}{l} \Rightarrow \dfrac{1}{{\sqrt a + 2}} < \dfrac{1}{2} \Rightarrow \dfrac{5}{{\sqrt a + 2}} < \dfrac{5}{2}\\ \Rightarrow P = 1 + \dfrac{5}{{\sqrt a + 2}} < 1 + \dfrac{5}{2} = \dfrac{7}{2}\\ \Rightarrow 1 < P < \dfrac{7}{2}\end{array}\)
Mà \(P \in \mathbb{Z} \Rightarrow P = \left\{ {2;\,\,3} \right\}.\)
+) Với \(P = 2 \Leftrightarrow \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = 2\) \( \Leftrightarrow \sqrt a + 7 = 2\left( {\sqrt a + 2} \right)\) \( \Leftrightarrow \sqrt a + 7 = 2\sqrt a + 4\)\( \Leftrightarrow \sqrt a = 3 \Leftrightarrow a = 9\,\,\,\left( {tm} \right).\)
+) Với \(P = 3 \Leftrightarrow \dfrac{{\sqrt a + 7}}{{\sqrt a + 2}} = 3\) \( \Leftrightarrow \sqrt a + 7 = 3\left( {\sqrt a + 2} \right)\)\( \Leftrightarrow \sqrt a + 7 = 3\sqrt a + 6\)\( \Leftrightarrow 2\sqrt a = 1 \Leftrightarrow \sqrt a = \dfrac{1}{2} \Leftrightarrow a = \dfrac{1}{4}\,\,\,\left( {tm} \right).\)
Vậy \(a = 9\) và \(a = \dfrac{1}{4}\) thỏa mãn yêu cầu bài toán.
Hướng dẫn giải:
Rút gọn \(P.\)
Đánh giá tập giá trị của biểu thức \(P\) sau đó tìm các giá trị nguyên của \(P\) rồi suy ra \(a.\) Đối chiếu với điều kiện rồi kết luận.