Trả lời bởi giáo viên
Đáp án đúng: c
Sử dụng kết quả câu trước \(\,P\left( x \right) + Q\left( x \right) = \,{x^2} + x + \dfrac{3}{4}\).
Xét: \(P\left( x \right) + Q\left( x \right) = 0\)
\(\begin{array}{l} \Leftrightarrow \,{x^2} + x + \dfrac{3}{4} = \left( {{x^2} + 2.\dfrac{1}{2}.x + \dfrac{1}{4}} \right) + \dfrac{2}{4}\\ = {\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{1}{2} \ge \dfrac{1}{2}\,\,\,\,\,\,\forall x\end{array}\).
Vậy \(P\left( x \right) + Q\left( x \right)\) luôn không có nghiệm.
Hướng dẫn giải:
Sử dụng kết quả câu trước \(\,P\left( x \right) + Q\left( x \right) = \,{x^2} + x + \dfrac{3}{4}\)
Cho \(P\left( x \right) + Q\left( x \right) = 0\) để tìm \(x.\)