Mắc vào đoạn mạch RLC không phân nhánh gồm một nguồn điện xoay chiều có tần số thay đổi được. Ở tần số \({f_1} = {\rm{60 Hz,}}\) hệ số công suất đạt cực đại. Ở tần số \({f_2} = 120{\rm{ Hz,}}\) hệ số công suất nhận giá trị \(\cos {\rm{\varphi }} = \dfrac{1}{{\sqrt 2 }}\). Ở tần số \({f_3} = 90{\rm{ Hz,}}\) hệ số công suất của mạch sẽ nhận giá trị
Trả lời bởi giáo viên
Tại \(f = {f_1} = 60\) Hz : \({Z_{L1}} = {Z_{C1}}\)
Tại \(f = {f_2} = 2{f_1} = 120\) Hz : \({Z_{L2}} = 2{Z_{L1}} = 2{Z_{C1}} = 4{Z_{C2}}\)
\(\cos {\varphi _2} = \dfrac{R}{{{Z_2}}} = \dfrac{R}{{\sqrt {{R^2} + 9{Z_{C2}}^2} }} = \dfrac{1}{{\sqrt 2 }} \Leftrightarrow 2{R^2} = {R^2} + 9{Z_{C2}}^2 \Leftrightarrow {R^2} = 9{Z_{C2}}^2 \Leftrightarrow R = 3{Z_{C2}}\)
Tại \(f = {f_3} = \dfrac{3}{4}{f_2} = 90\) Hz : \({Z_{L3}} = \dfrac{3}{4}{Z_{L2}} = 3{Z_{C2}}\) và \({Z_{C3}} = \dfrac{4}{3}{Z_{C2}}\)
\( \Rightarrow \cos {\varphi _3} = \dfrac{R}{{{Z_3}}} = \dfrac{R}{{\sqrt {{R^2} + {{\left( {{Z_{L3}} - {Z_{C3}}} \right)}^2}} }} = \dfrac{{3{Z_{C2}}}}{{\sqrt {9Z_{C2}^2 + {{\left( {3{Z_{L2}} - \dfrac{4}{3}{Z_{C2}}} \right)}^2}} }} = 0,874\)
Hướng dẫn giải:
Áp dụng công thức tính hệ số công suất: \(\cos \varphi = \dfrac{R}{Z} = \dfrac{R}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)