Trả lời bởi giáo viên
Ta có: \(\int {\left( {{x^2}{e^x} + 1} \right)dx} = \int {{x^2}{e^x}dx} + \int {dx} = x + \int {{x^2}{e^x}dx} \)
Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2xdx\\v = {e^x}\end{array} \right.\)
Suy ra \(\int {{x^2}{e^x}dx} = {x^2}{e^x} - \int {2x{e^x}dx} = {x^2}{e^x} - 2\int {x{e^x}dx} \)
Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v = {e^x}\end{array} \right. \Rightarrow \int {x{e^x}dx} = x{e^x} - \int {{e^x}dx} \)
Do đó \(\int {\left( {{x^2}{e^x} + 1} \right)dx} = x + \int {{x^2}{e^x}dx} \) \( = x + {x^2}{e^x} - 2\int {x{e^x}dx} \) \( = x + {x^2}{e^x} - 2\left( {x{e^x} - \int {{e^x}dx} } \right)\) \( = x + {x^2}{e^x} - 2\left( {x{e^x} - {e^x}} \right) + C\) \( = {e^x}\left( {{x^2} - 2x + 2} \right) + x + C\)
Hướng dẫn giải:
Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = {e^x}dx\end{array} \right.\), sử dụng phương pháp từng phần tìm nguyên hàm.