Câu hỏi:
2 năm trước

Hai bạn học sinh $A$ và $B$ đang đứng ở mặt đất bằng phẳng, cách nhau 80 m thì nhìn thấy một máy bay trực thăng điều khiển từ xa (ở vị trí $C$ nằm trên tia $AB$ và $AC>AB$). Biết góc ''nâng'' để nhìn thấy máy bay ở vị trí của $B$ là \(55^\circ \) góc ''nâng'' để nhìn thấy máy bay ở vị trí của $A$ là $40^\circ $. Hãy tính độ cao của máy bay lúc đó so với mặt đất? (làm tròn đến chữ số thập phân thứ hai)

Trả lời bởi giáo viên

Đáp án đúng: a

Độ cao của máy bay là $CD$,  độ dài $AB=80\,m$.

Gọi $BC = x (x>0)\Rightarrow AC = 80 + x$

Xét tam giác $BDC$ vuông tại $C$ có $CD = x.\tan 55^\circ $

Xét tam giác $ADC$ vuông tại $C$ có $CD = \left( {80 + x} \right).\tan 40^\circ $

Suy ra $x\tan 55^\circ  = \left( {80 + x} \right)\tan 40^\circ $

$\Leftrightarrow x \simeq 113,96\,m$

$ \Rightarrow CD = 113,96.\tan 55^\circ $

$\simeq 162,75\,m$

Vậy độ cao của máy bay so với mặt đất là $162,75\,m$.

Câu hỏi khác