Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}}\) có hai điểm cực trị \(A,\,\,B\) và tam giác \(OAB\) vuông tại O. Tổng tất cả các phần tử của \(S\) là:
Trả lời bởi giáo viên
ĐKXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có: \(y = \dfrac{{{x^2} + mx + 2m}}{{x + 1}} = x + m - 1 + \dfrac{{m + 1}}{{x + 1}}\).
\( \Rightarrow y' = 1 - \dfrac{{m + 1}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{{x^2} + 2x - m}}{{{{\left( {x + 1} \right)}^2}}}\)
Để hàm số đã cho có 2 cực trị thì phương trình \(y' = 0\) phải có 2 nghiệm phân biệt khác \( - 1\).
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 1 + m > 0\\1 - 2 - m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > - 1\\m \ne - 1\end{array} \right. \Leftrightarrow m > - 1.\)
Khi đó, giả sử \({x_1},\,\,{x_2}\) là nghiệm phân biệt của phương trình \(y' = 0\), áp dụng định lí Vi-ét ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\\{x_1}.{x_2} = - m\end{array} \right..\)
Đặt \(A\left( {{x_1};{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right),\,\,B\left( {{x_2};{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right)\) là hai điểm cực trị của hàm số.
Để tam giác \(OAB\) vuông tại \(O\) thì \(\overrightarrow {OA} .\overrightarrow {OB} = 0\).
\(\begin{array}{l} \Leftrightarrow {x_1}.{x_2} + \left( {{x_1} + m - 1 + \dfrac{{m + 1}}{{{x_1} + 1}}} \right)\left( {{x_2} + m - 1 + \dfrac{{m + 1}}{{{x_2} + 1}}} \right) = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\left( {\dfrac{{{x_1}}}{{{x_2} + 1}} + \dfrac{{{x_2}}}{{{x_1} + 1}}} \right)\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\left( {\dfrac{1}{{{x_1} + 1}} + \dfrac{1}{{{x_2} + 1}}} \right) + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow 2{x_1}{x_2} + \left( {m - 1} \right)\left( {{x_1} + {x_2}} \right) + \left( {m + 1} \right)\dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\\\,\,\,\,\,\,\,\,\, + {\left( {m - 1} \right)^2} + \left( {{m^2} - 1} \right)\dfrac{{{x_1} + {x_2} + 2}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}} = 0\\ \Leftrightarrow - 2m - 2\left( {m - 1} \right) + \left( {m + 1} \right).\dfrac{{2 + 2m}}{{ - m - 1}} + {\left( {m - 1} \right)^2} + \dfrac{{{{\left( {m + 1} \right)}^2}}}{{ - m - 1}} = 0\\ \Leftrightarrow - 2m - 2m + 2 - 2 - 2m + {m^2} - 2m + 1 - m - 1 = 0\\ \Leftrightarrow {m^2} - 9m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 9\end{array} \right.\,\,\left( {tm} \right)\end{array}\)
\( \Rightarrow S = \left\{ {0;9} \right\}\).
Vậy tổng tất cả các phần tử của S là \(9\).
Hướng dẫn giải:
- Chia tử cho mẫu, tính đạo hàm của hàm số.
- Tìm điều kiện để hàm số có 2 điểm cực trị (phương trình \(y' = 0\) có 2 nghiệm thỏa mãn ĐKXĐ).
- Áp dụng định lí Vi-ét.
- Điều kiện cần và đủ để tam giác \(OAB\) vuông tại \(O\) là \(\overrightarrow {OA} .\overrightarrow {OB} = 0\).
- Giải phương trình tìm \(m\) và đối chiếu điều kiện.