Giải phương trình \({x^2} + 6x + 1 - \left( {2x + 1} \right)\sqrt {{x^2} + 2x + 3} = 0\).
Số nghiệm của phương trình trên là:
Trả lời bởi giáo viên
Số nghiệm của phương trình trên là:
ĐKXĐ: \({x^2} + 2x + 3 \ge 0 \Leftrightarrow {\left( {x + 1} \right)^2} + 2 \ge 0\) (luôn đúng).
Đặt \(\left\{ \begin{array}{l}a = 2x + 1\\b = \sqrt {{x^2} + 2x + 3} \,\,\left( {b \ge 0} \right)\end{array} \right.\) ta có \(2a + {b^2} = 4x + 2 + {x^2} + 2x + 3 = {x^2} + 6x + 5\)
\( \Rightarrow {x^2} + 6x + 1 = 2a + {b^2} - 4\).
Khi đó phương trình trở thành:
\(2a + {b^2} - 4 - ab = 0 \Leftrightarrow {b^2} - ab + 2a - 4 = 0\,\,\left( * \right)\)
Coi (*) là phương trình bậc hai ẩn \(b\) với tham số \(a\) ta có
\(\Delta = {a^2} - 4\left( {2a - 4} \right) = {a^2} - 8a + 16 = {\left( {a - 4} \right)^2} \ge 0\,\,\forall a\)
Khi đó phương trình (*) có 2 nghiệm \(\left[ \begin{array}{l}b = \dfrac{{a + a - 4}}{2} = a - 2\\b = \dfrac{{a - a + 4}}{2} = 2\,\,\left( {tm} \right)\end{array} \right.\)
+) TH1: \(b = 2 \Rightarrow \sqrt {{x^2} + 2x + 3} = 2\) \( \Leftrightarrow {x^2} + 2x + 3 = 4 \Leftrightarrow {x^2} + 2x - 1 = 0\)
Ta có \(\Delta ' = 1 + 1 = 2 > 0\) nên phương trình có 2 nghiệm phân biệt \(\left[ \begin{array}{l}x = - 1 + \sqrt 2 \\x = - 1 - \sqrt 2 \end{array} \right.\).
+) TH2: \(b = a - 2 \ge 0 \Leftrightarrow a \ge 2\).
Khi đó ta có \(\sqrt {{x^2} + 2x + 3} = 2x - 1\) \( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 \ge 0\\{x^2} + 2x + 3 = 4{x^2} - 4x + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge \dfrac{1}{2}\\3{x^2} - 6x - 2 = 0\,\,\,\left( 1 \right)\end{array} \right.\)
Ta có \(\Delta ' = {3^2} - 3.\left( { - 2} \right) = 15 > 0\) nên phương trình (1) có 2 nghiệm phân biệt \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt {15} }}{3}\,\,\left( {tm} \right)\\x = \dfrac{{3 - \sqrt {15} }}{3}\,\,\left( {ktm} \right)\end{array} \right.\).
=> Tập nghiệm của phương trình đã cho là \(S = \left\{ { - 1 + \sqrt 2 ; - 1 - \sqrt 2 ;\dfrac{{3 + \sqrt {15} }}{3}} \right\}\).
Vậy phương trình đã cho có 3 nghiệm.
Hướng dẫn giải:
+ Xác định điều kiện của phương trình, \(\sqrt {f\left( x \right)} \) có nghĩa \( \Leftrightarrow f\left( x \right) \ge 0\)
+ Đặt \(\left\{ \begin{array}{l}a = 2x + 1\\b = \sqrt {{x^2} + 2x + 3} \,\,\left( {b \ge 0} \right)\end{array} \right.\), biến đổi phương trình ban đầu theo \(a,b\)
+ Giải phương trình bậc hai ẩn \(b\) với tham số \(a\), tìm được mối liên hệ của \(a,b\)
+ Với \(a,b\) ta tìm được nghiệm \(x\), đối chiếu và kết luận.