Câu hỏi:
2 năm trước

Cho \(y = \left( {m - 3} \right){x^3} + 2\left( {{m^2} - m - 1} \right){x^2} + \left( {m + 4} \right)x - 1\). Gọi \(S\) là tập tất cả các giá trị nguyên dương của \(m\) để đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía của trục \(Oy\). Hỏi \(S\) có bao nhiêu phần tử ?

Trả lời bởi giáo viên

Đáp án đúng: c

TXĐ: \(D = \mathbb{R}\).

Ta có \(y' = 3\left( {m - 3} \right){x^2} + 4\left( {{m^2} - m - 1} \right)x + m + 4\)

Xét \(y' = 0\)\( \Leftrightarrow 3\left( {m - 3} \right){x^2} + 4\left( {{m^2} - m - 1} \right)x + m + 4 = 0\).

Để đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía của trục \(Oy\) thì phương trình \(y' = 0\) có hai nghiệm phân biệt trái dấu.

Suy ra \(\left\{ \begin{array}{l}3\left( {m - 3} \right) \ne 0\\3\left( {m - 3} \right).\left( {m + 4} \right) < 0\end{array} \right. \Leftrightarrow  - 4 < m < 3\).

Mà \(m \in \mathbb{Z},\,\,m > 0\) nên \(m = \left\{ {1;2} \right\}\).

Vậy \(S\) có \(2\) phần tử.

Hướng dẫn giải:

Đồ thị có hai điểm cực trị nằm về hai phía của trục tung nếu phương trình y'=0 có hai nghiệm phân biệt trái dấu.

Câu hỏi khác