Câu hỏi:
2 năm trước
Cho số phức \(z = 2 - 3i.\) Trên mặt phẳng tọa độ, điểm biểu diễn số phức \({\rm{w}} = \overline z .i\) là điểm nào dưới đây?
Trả lời bởi giáo viên
Đáp án đúng: d
Ta có: \(z = 2 - 3i \Rightarrow \overline z = 2 + 3i\)
\( \Rightarrow {\rm{w}} = \overline z i = \left( {2 + 3i} \right)i = 2i + 3{i^2} = - 3 + 2i.\)
\( \Rightarrow \) Số phức \(w\) có điểm biểu diễn là \(A\left( { - 3;\,\,2} \right).\)
Hướng dẫn giải:
Cho số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\) \( \Rightarrow \overline z = x - yi.\)
Số phức \(z = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\) có điểm biểu diễn là \(M\left( {x;\,\,y} \right).\)