Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:
Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$
Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$\( \Leftrightarrow \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: \( \Rightarrow x - 2 - 7x + 7 = - 1 \Leftrightarrow - 6x = - 6 \Leftrightarrow x = 1\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).
Chọn câu đúng.
Trả lời bởi giáo viên
ĐKXĐ: $x \ne 1;\,x \ne 2$
Ta có $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$\( \Leftrightarrow \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ - 1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
\( \Rightarrow x - 2 - 7x + 7 = - 1 \Leftrightarrow - 6x = - 6 \Leftrightarrow x = 1\)(không thỏa mãn ĐK)
Vậy phương trình vô nghiệm.
Bạn Long sai ở bước $3$ do không đối chiếu với điều kiện ban đầu.
Hướng dẫn giải:
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.