Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.
Trả lời bởi giáo viên
*Xét phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\)
ĐKXĐ: \(x \ne 0;x \ne 2\)
Khi đó
\(\begin{array}{l}\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0 \Leftrightarrow \dfrac{{1\left( {x - 2} \right) + 2x}}{{x\left( {x - 2} \right)}} = 0\\ \Rightarrow 1\left( {x - 2} \right) + 2x = 0 \Leftrightarrow x - 2 + 2x = 0\\ \Leftrightarrow 3x = 2 \Leftrightarrow x = \dfrac{2}{3}\,\left( {TM} \right)\end{array}\)
Vậy phương trình \(\left( 1 \right)\) có nghiệm duy nhất \(x = \dfrac{2}{3}\).
* Xét phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\)
ĐKXĐ: \(x \ne \pm 2\)
Khi đó
\(\begin{array}{l}\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\\ \Leftrightarrow \dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} + \dfrac{{5x - 2}}{{{x^2} - 4}} = 0\\ \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) + 5x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) + 5x - 2 = 0\\ \Leftrightarrow {x^2} - 3x + 2 - {x^2} - 2x + 5x - 2 = 0\\ \Leftrightarrow 0x = 0 \Leftrightarrow x \in \mathbb{R}.\end{array}\)
Kết hợp ĐKXĐ ta có phương trình nghiệm đúng với mọi \(x \ne \pm 2\).
Do đó phương trình \(\left( 2 \right)\) có nghiều nghiệm hơn phương trình \(\left( 1 \right)\).
Hướng dẫn giải:
Giải từng phương trình theo các bước sau và kết luận.
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.