Câu hỏi:
2 năm trước

Cho \(\left( {O;R} \right)\) có hai đường kính \(AB,CD\) vuông góc với nhau. Gọi \(M\) là điểm chính giữa cung \(BC\) . Dây \(AM\) cắt \(OC\) tại \(E\) , dây \(CM\) cắt đường thẳng \(AB\) tại \(N\) .

Tam giác \(MCE\) là tam giác gì?

Trả lời bởi giáo viên

Đáp án đúng: b

Xét \(\left( O \right)\) có \(\widehat {MEC}\) là góc có đỉnh bên trong đường tròn nên

\(\widehat {MEC} = \dfrac{1}{2}\) (sđ \(\overparen{AD} + \) sđ \(\overparen{MC}\) )

Và \(\widehat {MCE} = \widehat {MCD} \)

\(= \dfrac{1}{2}\) (sđ \(\overparen{BD} + \) sđ \(\overparen{BM}\) )

mà cung \(MB = \) cung \(MC\)

và cung \(AD = \) cung \(BD\)

Từ đó \(\widehat {MEC} = \widehat {MCE} \Rightarrow \Delta MEC\) cân tại \(M\) . 

Hướng dẫn giải:

Sử dụng góc nội tiếp và góc có đỉnh bên trong đường tròn

Câu hỏi khác