Câu hỏi:
2 năm trước
Cho \(\left( {O;R} \right)\) có hai đường kính \(AB,CD\) vuông góc với nhau. Gọi \(M\) là điểm chính giữa cung \(BC\) . Dây \(AM\) cắt \(OC\) tại \(E\) , dây \(CM\) cắt đường thẳng \(AB\) tại \(N\) .
Tam giác \(MCE\) là tam giác gì?
Trả lời bởi giáo viên
Đáp án đúng: b
Xét \(\left( O \right)\) có \(\widehat {MEC}\) là góc có đỉnh bên trong đường tròn nên
\(\widehat {MEC} = \dfrac{1}{2}\) (sđ \(\overparen{AD} + \) sđ \(\overparen{MC}\) )
Và \(\widehat {MCE} = \widehat {MCD} \)
\(= \dfrac{1}{2}\) (sđ \(\overparen{BD} + \) sđ \(\overparen{BM}\) )
mà cung \(MB = \) cung \(MC\)
và cung \(AD = \) cung \(BD\)
Từ đó \(\widehat {MEC} = \widehat {MCE} \Rightarrow \Delta MEC\) cân tại \(M\) .
Hướng dẫn giải:
Sử dụng góc nội tiếp và góc có đỉnh bên trong đường tròn