Câu hỏi:
2 năm trước
Cho \(\left( {O;4} \right)\) có dây \(AC\) bằng cạnh hình vuông nội tiếp và dây \(BC\) bằng cạnh tam giác đều nội tiếp đường tròn đó ( điểm \(C\) và \(A\) nằm cùng phía với \(BO\) ). Tính số đo góc \(ACB\)
Trả lời bởi giáo viên
Đáp án đúng: d
+ Vì \(AC\) bằng cạnh của hình vuông nội tiếp \(\left( O \right)\) nên số đo cung \(AC = 90^\circ \)
Vì \(BC\) bằng cạnh của tam giác đều nội tiếp \(\left( O \right)\) nên số đo cung \(BC = 120^\circ \)
Từ đó suy ra số đo cung \(AB = 120^\circ - 90^\circ = 30^\circ \)
+ Vì \(\widehat {ACB}\) là góc nội tiếp chắn cung \(AB\) nên \(\widehat {ACB} = \dfrac{{30^\circ }}{2} = 15^\circ \)
Hướng dẫn giải:
+ Tìm số đo các cung \(BC\) và \(AB\) để tìm số đo cung \(AC\)
+ Sử dụng: số đo góc nội tiếp bằng nửa số đo cung bị chắn