Câu hỏi:
2 năm trước
Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Trả lời bởi giáo viên
Đáp án đúng: b
Áp dụng các công thức trong tứ diện đều cạnh $a$
Bán kính mặt cầu nội tiếp $r = \dfrac{{a\sqrt 6 }}{{12}} = 1 \Rightarrow a = 2\sqrt 6 $
Thể tích tứ diện đều đó là $V = \dfrac{{{a^3}\sqrt 2 }}{{12}} = 8\sqrt 3 $
Hướng dẫn giải:
Trong các hình chóp tam giác đều ngoại tiếp một mặt cầu, hình tứ diện đều có thể tích nhỏ nhất.
- Bán kính mặt cầu nội tiếp tứ diện đều cạnh \(a\) là \(r = \dfrac{{a\sqrt 6 }}{{12}}\)
- Thể tích tứ diện đều cạnh \(a\) là \(\dfrac{{{a^3}\sqrt 2 }}{{12}}\)