Câu hỏi:
2 năm trước

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông tại \(A\), \(AB = 2a\sqrt 3 \). Đường chéo \(BC'\) tạo với mặt phẳng \(\left( {AA'C'C} \right)\) một góc bằng \(60^\circ \). Gọi \(\left( S \right)\) là mặt cầu ngoại tiếp hình lăng trụ đã cho. Bán kính của mặt cầu \(\left( S \right)\) bằng

Trả lời bởi giáo viên

Đáp án đúng: d

Gọi \(M\) là trung điểm \(BC\), \(I\) là trung điểm \(BC'\). Khi đó, \(IM\) là trục của đường tròn ngoại tiếp tam giác \(ABC\). Mặt khác, \(IB = IC = IB' = IC' = IA'\). Do đó, \(I\) là tâm mặt cầu ngoại tiếp lăng trụ \(ABC.A'B'C'\). Bán kính \(R = \dfrac{1}{2} \cdot BC' = \dfrac{1}{2} \cdot \dfrac{{AB}}{{\sin 60^\circ }} = \dfrac{{4a}}{2} = 2a\).

Hướng dẫn giải:

- Tìm tâm mặt cầu ngoại tiếp lăng trụ (cách đều các đỉnh của lăng trụ)

- Tính bán kính và kết luận đáp án.

Câu hỏi khác