Câu hỏi:
2 năm trước

Cho hình chóp tam giác \(S.ABC\) có \(\widehat {SAC} = \widehat {SBC} = {90^0}\). Khi đó tâm mặt cầu ngoại tiếp hình chóp nằm trên đường thẳng nào?

Trả lời bởi giáo viên

Đáp án đúng: c

Ta thấy: \(\widehat {SAC} = \widehat {SBC} = {90^0}\) nên các đỉnh \(A,B\) luôn nhìn cạnh \(SC\) một góc \({90^0}\). Do đó tâm mặt cầu ngoại tiếp hình chóp là trung điểm \(SC\).

Hướng dẫn giải:

Hình chóp có các đỉnh nhìn đoạn thẳng nối hai đỉnh còn lại dưới một góc vuông thì tâm mặt cầu ngoại tiếp nằm ở trung điểm đoạn thẳng nối hai đỉnh đó

Câu hỏi khác