Câu hỏi:
2 năm trước
Cho hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 3;7} \right)\) và xác định tại hai điểm \(x = - 3;x = 7\). Chọn kết luận đúng:
Trả lời bởi giáo viên
Đáp án đúng: a
Vì hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( { - 3;7} \right)\) và tồn tại \(f\left( { - 3} \right),f\left( 7 \right)\) nên \(f\left( { - 3} \right) < f\left( x \right) < f\left( 7 \right),\forall x \in \left[ { - 3;7} \right]\).
Vậy \(f\left( { - 3} \right)\) là GTNN của \(f\left( x \right)\) trên \(\left[ { - 3;7} \right]\).
Hướng dẫn giải:
Hàm số đồng biến trên khoảng \(\left( {a;b} \right)\) và xác định tại hai đầu mút thì đạt GTNN trên \(\left[ {a;b} \right]\) là \(f\left( a \right)\), đạt GTLN trên \(\left[ {a;b} \right]\) là \(f\left( b \right)\).