Câu hỏi:
2 năm trước
Cho hai số phức \({z_1} = 2 + 3i\) và \({z_2} = 3 - 2i.\) Tọa độ điểm biểu diễn số phức \({z_1} - {z_2}\) là:
Trả lời bởi giáo viên
Đáp án đúng: a
Ta có: \(\left\{ \begin{array}{l}{z_1} = 2 + 3i\\{z_2} = 3 - 2i\end{array} \right.\) \( \Rightarrow {z_1} - {z_2} = \left( {2 - 3} \right) + \left( {3 + 2} \right)i = - 1 + 5i\)
\( \Rightarrow M\left( { - 1;\,\,5} \right)\) là điểm điểm biểu diễn số phức \({z_1} - {z_2}.\)
Hướng dẫn giải:
Cho \({z_1} = {a_1} + {b_1}i;\,\,{z_2} = {a_2} + {b_2}i\,\,\,\left( {{a_1},\,\,{a_2},\,\,{b_1},\,\,{b_2} \in \mathbb{R}} \right).\) Khi đó ta có: \({z_1} - {z_2} = {a_1} - {a_2} + \left( {{b_1} - {b_2}} \right)i.\)
Cho số phức \(z = x + yi\;\;\left( {x,\;y \in \mathbb{R}} \right) \Rightarrow M\left( {x;\;y} \right)\) là điểm biểu diễn số phức \(z.\)