Cho hai biểu thức:
\(A = \dfrac{x}{{x - 3}},\)\(B = \dfrac{{2x}}{{x + 5}} - \dfrac{{{x^2} - 15x}}{{{x^2} - 25}}\,\,\,\,\left( {x \ne 0;x \ne 3;x \ne \pm 5} \right)\)
Tính giá trị của biểu thức \(A\) tại \(x\) thỏa mãn \(\left| {x - 2} \right| = 1\).
Trả lời bởi giáo viên
Điều kiện: \(x \ne 3.\)
Ta có: \(\left| {x - 2} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}x - 2 = 1\\x - 2 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1 + 2\\x = - 1 + 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,(ktm)\\x = 1\,\,\,(tm)\end{array} \right.\)
Thay \(x = 1\) vào biểu thức \(A\) ta có: \(\dfrac{1}{{1 - 3}} = \dfrac{1}{{ - 2}} = - \dfrac{1}{2}\)
Vậy giá trị của biểu thức \(A\) tại \(x\) thỏa mãn \(\left| {x - 2} \right| = 1\) là \(\dfrac{{ - 1}}{2}\).
Hướng dẫn giải:
- Áp dụng định nghĩa giá trị tuyệt đối: \(\left| x \right| = a \Rightarrow \left[ \begin{array}{l}x = a\\x = - a\end{array} \right.\)
- Thay giá trị \(x\) vừa tìm được vào biểu thức \(A.\)