Câu hỏi:
2 năm trước

Tìm \(x\) để \(Q =B:A> 1\).

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có: \(Q = \dfrac{{x - 3}}{{x - 5}} = \dfrac{{x - 5 + 2}}{{x - 5}} \)\(= 1 + \dfrac{2}{{x - 5}}\)

Do đó để \(Q > 1\) thì \(1 + \dfrac{2}{{x - 5}} > 1 \Leftrightarrow \dfrac{2}{{x - 5}} > 0\)\( \Leftrightarrow x - 5 > 0 \Leftrightarrow x > 5\,\,\,(tmdk)\)

Vậy với \(x > 5\) thì \(Q > 1\).

Hướng dẫn giải:

Sử dụng kết quả câu trước \(Q = B:A = \dfrac{{x - 3}}{{x - 5}}\) với \(x \ne 0;\,\,x \ne 3;\,\,x \ne  \pm 5.\)

Từ đó giải bất phương trình chứa ẩn ở mẫu thu được.

Câu hỏi khác