Câu hỏi:
2 năm trước

Cho đường thẳng \(d:y = ({m^2} - 2m + 2)x + 4\). Tìm \(m\) để \(d\) cắt \(Ox\) tại \(A\) và cắt \(Oy\) tại \(B\) sao cho diện tích tam giác \(AOB\) lớn nhất.

Trả lời bởi giáo viên

Đáp án đúng: a

\(\begin{array}{l}d \cap Oy = \left\{ B \right\}\\x_B = 0 \Rightarrow y_B = 4 \Rightarrow B(0;4) \Rightarrow OB = |4| = 4\\d \cap {\rm{Ox}} = \left\{ A \right\}\\y_A = 0 \Leftrightarrow ({m^2} - 2m + 2)x_A + 4 = 0 \\\Leftrightarrow x_A = \dfrac{{ - 4}}{{{m^2} - 2m + 2}} \Rightarrow A\left( {\dfrac{{ - 4}}{{{m^2} - 2m + 2}};0} \right)\\ \Rightarrow OA = \left| {\dfrac{{ - 4}}{{{m^2} - 2m + 2}}} \right|\end{array}\)

\({S_{\Delta AOB}} = \dfrac{1}{2}OA.OB \)\(= \dfrac{1}{2}.4.\left| {\dfrac{{ - 4}}{{{m^2} - 2m + 2}}} \right| \)\(= \dfrac{8}{{{{(m - 1)}^2} + 1}}\)

Ta có \({(m - 1)^2} + 1 \ge 1\begin{array}{*{20}{c}}{}&{\forall m}\end{array}\)

Do đó \({S_{\Delta AOB}} = \dfrac{8}{{{{(m - 1)}^2} + 1}} \le \dfrac{8}{1} = 8\)

Dấu “=” xảy ra khi \(m - 1 = 0 \Leftrightarrow m = 1\).

Hay tam giác \(OAB\) có diện tích lớn nhất là \(8\) khi \(m=1.\)

Hướng dẫn giải:

Tìm tọa độ giao điểm của đường thẳng và 2 trục tọa độ.

Biện luận và giải phương trình.

Câu hỏi khác