Cho \({\left( {a + b + c} \right)^2} + 12 = 4\left( {a + b + c} \right) + 2\left( {ab + bc + ca} \right)\). Khi đó
Trả lời bởi giáo viên
Ta có \({\left( {a + b + c} \right)^2} + 12 = 4\left( {a + b + c} \right) + 2\left( {ab + bc + ca} \right)\)
\( \Leftrightarrow {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right) + 12 = 4\left( {a + b + c} \right) + 2\left( {ab + ac + bc} \right)\)
\( \Leftrightarrow {a^2} + {b^2} + {c^2} - 4a - 4b - 4c + 12 = 0\)
\( \Leftrightarrow \left( {{a^2} - 4a + 4} \right) + \left( {{b^2} - 4b + 4} \right) + \left( {{c^2} - 4c + 4} \right) = 0\)
\( \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} = 0\)
Mà \({\left( {a - 2} \right)^2} \ge 0;\,{\left( {b - 2} \right)^2} \ge 0;{\left( {c - 2} \right)^2} \ge 0\) với mọi \(a,b,c.\)
Nên \({\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 2} \right)^2} \ge 0\) với mọi \(a,b,c\)
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}a - 2 = 0\\b - 2 = 0\\c - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 2\\c = 2\end{array} \right. \Leftrightarrow a = b = c = 2\)
Hướng dẫn giải:
Biến đổi giả thiết bằng cách sử dụng hằng đẳng thức \({\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)\)
\({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)
Từ đó đưa về dạng \({A^2} + {B^2} + {C^2} = 0 \Leftrightarrow A = B = C = 0\)